Name _____

Date _____

Law of Sines and the Ambiguous Case - Guided Lesson Explanation:

Explanation#1

Use the Law of Sines: a/sin A = c/sin c

 $8/40^{\circ} = 17/\sin c$

 $8(\sin C) = 17*\sin 40^{\circ}$

 $\sin C = 17*(0.6)/8 = 1.275$

Since $\sin C$ must be < 1, no angle exists for angle C. NO triangle exists for these measurements.

Explanation#2

Use the Law of Sines: a/sin A = b/sin B

 $12/20^{\circ} = 17/\sin B$ $12(\sin B) = 17*\sin 20^{\circ}$

 $\sin B = 17*(0.3)/12 = 0.425$

Angles could be 20°, 25.15°, and 134.85°: sum 180°

Now $m < A = 20^{\circ}$ and $m < B = 25.15^{\circ}$ the sum of the angles exceed 180°. Not possible! Therefore, m<B = 25.15°, m<A = 20°, and m<C = 134.85° and only ONE triangle is possible.

Explanation#3

Use the Law of Sines: a/sin A = b/sin B

 $15/40^{\circ} = 20/\sin B$

 $15(\sin B) = 20*\sin 40°$

 $\sin B = 20*(0.6)/15 = 0.8$

Angles could be 40°, 53.13°, and 86.87°, sum 180°

Now $m < A = 40^{\circ}$ and $m < B = 53.13^{\circ}$ the sum of the angles would exceed 180°. Not possible! Therefore, m<B = 53.13°, m<A = 40°, and m<C = 86.87° and only ONE triangle is possible.