Name _____

Date _____

Similar Polygons: Ratio of Perimeters & Areas - Guided Lesson Explanation:

Explanation#1

Areas of two similar polygons are in the ratio 49:25, So the ratio of the corresponding sides 7:5.

Answer is: 7:5

Explanation#2

Area of triangle = $\frac{1}{2}$ x base x height

 $\Delta ABC = \frac{1}{2}(10)(12)$ $\Delta PQR = \frac{1}{2}(8)(10)$

 $\Delta ABC = 60 \qquad \qquad \Delta PQR = 40$

Now you can compare the ratio of the areas of these similar triangles.

Area \triangle ABC/ Area \triangle PQR

60/40

6/4

3/2

If two similar triangles have a scale factor of a : b, then the ratio of their areas is $a^2 : b^2$.

```
Name _____
```

Date _____

Explanation#3

If we call the triangles $\Delta 1$ and $\Delta 2$, then

 $\frac{perimeter\ triangle\ 1}{perimeter\ triangle\ 2} = \frac{3}{6}$

According to *Theorem 60*, this also means that the scale factor of these two similar triangles is 3 : 6.

```
Let 3x = a side in \Delta 1
```

And 6x = the corresponding side in $\Delta 2$

Then, $\frac{area\ triangle\ 1}{area\ triangle\ 2} = (\frac{3x}{6x})^2$ (Theorem 61)

 $\frac{area\ triangle\ 1}{area\ triangle\ 2} = \frac{9x^2}{36x^2}$

Step 3) Because the sum of the areas is 90 cm^2 , We get

Area $\triangle 1$ + Area $\triangle 2$ = 9x² + 36x²

 $90 = 45x^2$

 $2 = x^2$

Area $\Delta 1 = 9x^2$ Area $\Delta 2 = 36x^2$

= 9(2) = 36(2)

 $= 18 \text{ cm}^2 = 72 \text{cm}^2$