Logarithmic Functions - Guided Lesson Explanation

Explanation #1

If
$$y = \log_b x$$

Then
$$x = b^y$$
 (where $x > 0$ and $b > 1$)

Here,
$$b = 5$$
 $x = 125$ $y = 3$

Hence, the exponential statement of:

$$3 = \log_5 125$$
 is $5^3 = 125$

Explanation #2

This is a basic logarithmic function and follows the format:

$$f(x) = \log_{\alpha}(x)$$
, $\alpha > 1$

The range of such a function is infinite in both directions,

i.e. Range of
$$f(x) = (-infinity, +infinity)$$

Given that:

$$f(x) = log_3(x) + 6$$

Here,

a = 3 and hence a > 1

So the range of $f(x) = \log_3(x) + 6$ is:

R = All real numbers

Name _____

Date _____

Explanation #3

If
$$y = \log_b x$$

Then
$$x = b^y$$
 (where $x > 0$ and $b > 1$)

Given that:

$$7 = \log_3 22$$

Here,
$$b = 3$$
 $x = 22$ $y = 7$

Hence, the exponential form of:

$$7 = \log_3 22$$
 is $3^7 = 22$