Name _____

Date _____

Converting Between Logarithmic and Exponential Forms - Guided Lesson Explanation

When converting logarithmic to exponential form that equivalency can be best expressed as:

 $\mathbf{y} = \mathbf{log}_{\mathbf{b}} \mathbf{x}$ is equivalent to $\mathbf{x} = \mathbf{b}^{\mathbf{y}}$

Explanation#1

Remember that the logarithm form stems from the exponent:

Hence,

 $\mathbf{x} = \mathbf{b}^{\mathbf{y}}$ is $\log_{\mathbf{b}} \mathbf{x} = \mathbf{y}$

So logarithmic form of given exponential form is $\log_7 49 = 2$

Explanation#2

The logarithm form can be converted into its equivalent exponent form using the following relationship:

 $\log_{b}(\mathbf{x}) = \mathbf{y}$ is equivalent to $\mathbf{x} = \mathbf{b}^{\mathbf{y}}$

So exponential form of given logarithmic form is $3^3 = 27$

Explanation#3

The exponential form can be converted into its equivalent logarithmic form using the following relationship:

 $\mathbf{x} = \mathbf{b}^{\mathbf{y}}$ is equivalent to $\log_{\mathbf{b}}(\mathbf{x}) = \mathbf{y}$

So logarithmic form of given exponential form is $\log_4 16 = 2$

