Name _____

Rectangular and Polar Forms of Complex Numbers- Guided Lesson Explanation

Explanation#1

There are known formulas as you will see below for converting x and y to polar forms

$r = \sqrt{x^2 + y^2}$	(To find r.)
$r = \sqrt{3^2 + 7^2}$	
$r = \sqrt{9+49}$	
$r = \sqrt{58}$	
r = 7.61	
$\theta = \tan^{-1} = \frac{y}{x}$	(To find θ.)
$\tan^{-1} = \frac{7}{3}$	
tan ⁻¹ =2.33	
tan ⁻¹ = 66.77	

Name _____

Date _____

Explanation#2

We follow the same series of procedures as in number one. Since we are converting from rectangular to polar forms again.

 $r = \sqrt{x^{2} + y^{2}}$ $r = \sqrt{2^{2} + 5^{2}}$ $r = \sqrt{4 + 25}$ $r = \sqrt{29}$ r = 5.38 $\theta = \tan^{-1} = \frac{y}{x}$ $\tan^{-1} = \frac{5}{2}$ $\tan^{-1} = 2.5$ $\tan^{-1} = 68.19$

Explanation#3

The known formulas for converting from polar to rectangular form are:

 $x = r \cos \theta$ and $y = r \sin \theta$ r = the distance from the origin $\theta =$ angle relative to the Zero axisNow we plug our numbers into this equation: $x = 4 \cos 75^{\circ}$ $y = 4 \sin 75^{\circ}$ $x = 4 \times 0.25$ $y = 4 \times 0.96$ x = 1y = 3.84Rectangular form = (1, 3.84)

