Name _

Date _

Cavalieri's Principle - Independent Practice Worksheet

Complete all the problems. Make sure to draw pictures to help you solve the problems.

1. Calculate the volume of the "globe" with circular cross-sectional area equal to $\Pi^{12}\sqrt{x^4}$ above x in the interval [0, 1].

2. Calculate the volume of the "ball" with circular cross-sectional area equal to $\Pi \sqrt[6]{x^8}$ above x in the interval [0, 1].

3. Calculate the volume of the "egg" with circular cross-sectional area equal to $\Pi^{14}\sqrt{x^3}$ above x in the interval [0, 1].

4. Calculate the volume of the "lemon" with circular cross-sectional area equal to $\Pi^{18}\sqrt{x^4}$ above x in the interval [0, 1].

5. Calculate the volume of the "coin" with circular cross-sectional area equal to $\Pi \sqrt[8]{x^5}$ above x in the interval [0, 1].

6. Let $A(x) = \sqrt[1^2]{X^3}$ describes the area of a cross-section of a block at x (perpendicular to the x-axis). Find the volume of block from x=0 to x=1.

7. Let $A(x) = \sqrt[5]{x^9}$ describes the area of a cross-section of a stone at x (perpendicular to the x-axis). Find the volume of stone from x=0 to x=1.

8. Let A(x) = $\sqrt[10]{X^4}$ describes the area of a cross-section of a brick at x (perpendicular to the x-axis). Find the volume of brick from x=0 to x=1.

9. Let $A(x) = \sqrt[11]{x^6}$ describes the area of a cross-section of a ice at x (perpendicular to the x-axis). Find the volume of ice from x=0 to x=1.

10. Let $A(x) = \sqrt[9]{x^{11}}$ describes the area of a cross-section of a cake at x (perpendicular to the x-axis). Find the volume of cake from x=0 to x=1.