Name _____

Date _____

Graphing Square and Cube Roots - Guided Lesson Explanation

Explanation#1

We find the plotting points of the given inequality equation.

The given equation is $f(x) = \sqrt{x+2} + 3$

In the above equation, we take f(x) as y, we get

 $\sqrt{x+2} - y+3 = 0$

We are going to find out the plotting points for given equation. In the first step, we are going to change equation in the form of y = mx+c, we get the following term

$$\sqrt{x+2} + 3 = y$$

$$y = \sqrt{x+2} + 3$$

In the above equation, we put x = -2, we get

$$y = \sqrt{-2+2} + 3$$

In the above equation. We put x = -3, we get

$$y = \sqrt{-3+2} + 3$$

In the above equation, we put x = 2 we get

$$y = \sqrt{2+2} + 3$$

In the above equation, we put x = 7, we get

 $y = \sqrt{7+2} + 3$

From equation (1), we get the following values,

х	-2	-3	2	7
У	3	2	5	6

Explanation#2

 $y = \pm \sqrt{x - h} + k$ is the inverse of $y = (x - h)^2 + k$ $Y = \sqrt{x+1} + 1$ Answer is: $y = \sqrt{x+1} + 1$

Explanation#3

We find the plotting points of the given inequality equation. The given equation is $f(x) = \sqrt{x-2} + 2$

In the above equation, we take f(x) as y, we get

 $\sqrt{x-2} - y + 2 = 0$

We are going to find out the plotting points for given equation. In the first step, we are going to change equation in the form of y = mx+c, we get the following term

$$\sqrt{x-2} + 2 = y$$

 $y = \sqrt{x-2} + 2$

In the above equation, we put x = 2, we get

$$y = \sqrt{2 - 2} + 2$$

y = 2

In the above equation. We put x = 3, we get

Name _____

Date _____

x = 6, we get

$$y = \sqrt{3-2} + 2$$

y = 3
In the above equation, we put
$$y = \sqrt{6-2} + 2$$

From equation (1), we get the following values,

X	2	3	6
У	2	3	4

