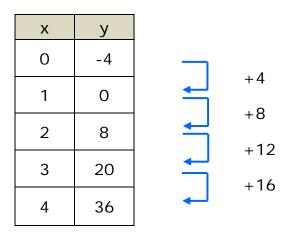
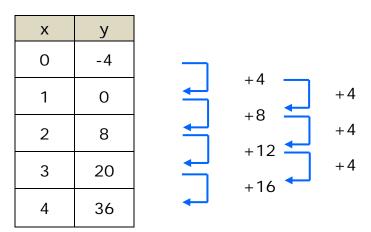
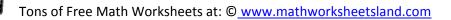
Models of Data - Guided Lesson Explanation

For all the problems, we can compare the successive y-values.


Linear Functions = The first differences between successive y-values are equal. They make a line.

Quadratic Functions = The second differences between successive y-values are equal. They make a parabola when graphed.


Exponential Functions = If the ratios between successive y-values are equal. They get steeper and steeper as they go along.


Explanation#1

Find the first differences in the table.

Find the second differences in the table.

Name _____

Date _____

Since the second differences are all equal, the function is quadratic.

 $(y = ax^2 + bx + c)$ Because the function is quadratic it takes this form.

a term = rate of the rate = 4/2 = 2

c term = y-intercept = -4

The b term is a little more tricky. We start by looking at what we already have and plug our given x values in. This will tell us how to determine b.

 $2x^{2}$ -4


x	У	1) y-value without b	2) value missing
0	-4	-4	0
1	0	-2	-2
2	8	4	-4
3	20	14	-6
4	36	28	-8

In 1, we calculate the value without b inserted in the equation. In 2, we see how far the value is off from the actual value with b present.

Now we look at 2 and determine how far off each value is.

They are off by -2. This means that b is -2x. Now we put it together for the final euqation.

 $2x^2 - 2x - 4$

Date _____

Explanation#2

Find the first differences in the table.

х	у	
1	5	+6
2	11	+18
3	29	+54
4	83	+162
5	245	

Since the differences are not all equal, the function can't be quadratic. Find the second differences in the table.

х	у	
1	5	
2	11	+6 x3
3	29	+18 x3
4	83	+54 $+162$ $x3$
5	245	+102 +

The ratios between successive y-values are all 3, so the function is exponential $(y=a^x)$. When the ratios are the same, the base a is equal to the common ratio, 3.

$$(y = 3^{x})$$

Now we need to see if anything further is being done to the data beyond $(y = 3^{x})$.

Name _____

Date _____

Current values

Values using $y = 3^x$

Х	у
1	5
2	11
3	29
4	83
5	245

Х	У	difference between tables
1	3	-2
2	9	-2
3	27	-2
4	81	-2
5	243	-2

To make the values equal we would need to add 2.

The finally equation would need to be $3^{x} + 2$.

Explanation#3

Find the first differences in the table.

х	у		
-2	9		
-1	16		+7
0	23	┥	+7
1	30		+7
2	37		+7

Since the first differences are all equal, the function is linear(y = mx + b).

(y = mx + b)

The slope is "m".

The starting point is "b" or x = 0. The y-value is 23.

Now, plug in one of the points from the table.

y = 7(-2) + 23)

The function is y = 7(-2) + 23.

Tons of Free Math Worksheets at: © www.mathworksheetsland.com