Name \_\_\_\_\_

#### Date \_\_\_\_\_

Writing Expression for Geometric Sequences - Guided Lesson Explanation

### Explanation#1

The formula for the n<sup>th</sup> term of a geometric sequence is

 $a^{n} = a_{1}r^{n-1}$ 

Where  $a^n$  is the  $n^{th}$  term,  $a_1$  is the first term, r is the common ratio, and n is the position of a term in the sequence.

We have find  $a_1$ , the first term in the sequence.

-4, -16, -64, .....

The first term,  $a_1$ , is <sup>-</sup> 4.

Next find r, the common ratio between consecutive terms.

-4, -16, -64

The common ratio, r, is 4

Finally, plug  $a_1 = 4$  and r = 4 into the formula.

$$a_n = a_1 (r)^{n-1}$$

$$a_n = -4 (4)^{n-1}$$

The sequence -4, -16, -64,.... is described by the equation  $a_n = -4 (4)^{n-1}$ 

# Explanation#2

The formula for the n<sup>th</sup> term of a geometric sequence is

 $a^{n} = a_{1}r^{n-1}$ 

Where  $a^n$  is the  $n^{th}$  term,  $a_1$  is the first term, r is the common ratio, and n is the position of a term in the sequence.

we have to find  $a_1$ , the first term in the sequence.

-5, -25, -125,.....

The first term,  $a_1$ , is -5.

Next find r, the common ratio between consecutive terms.



Tons of Free Math Worksheets at: © <u>www.mathworksheetsland.com</u>

Name \_\_\_\_\_

#### Date \_\_\_\_\_

-5, -25, -125

The common ratio, r, is 5

Finally, plug  $a_1 = 5$  and r = 5 into the formula.

$$a_n = a_1 (r)^{n-1}$$

 $a_n = -5 (5)^{n-1}$ 

The sequence -5, -25, -125, .... is described by the equation  $a_n = -5(5)^{n-1}$ 

# Explanation#3

The formula for the n<sup>th</sup> term of a geometric sequence is

 $a^{n} = a_{1}r^{n-1}$ 

where  $a^n$  is the  $n^{th}$  term,  $a_1$  is the first term, r is the common ratio, and n is the position of a term in the sequence.

We have find  $a_1$ , the first term in the sequence.

-6, -36, -216, .....

The first term,  $a_1$ , is – 6.

Next find r, the common ratio between consecutive terms.

The common ratio, r, is 6

Finally, plug  $a_1 = -6$  and r = 6 into the formula.

$$a_n = a_1 (r)^{n-1}$$

$$a_n = -6 (6)^{n-1}$$

The sequence -6, -36, -216, .... is described by the equation  $a_n = -6(6)^{n-1}$