Name ____

Date _____

Quadratic Equations: Completing the Square - Guided Lesson Explanation

For the problems we can complete the square by adding $(\frac{b}{2})^2$ with quadratic expressions like $x^2 + bx$.

Explanation#1

Now we will add $\left(\frac{b}{2}\right)^2$ to complete the square.

$$t^{2} + 16t + \left(\frac{b}{2}\right)^{2}$$

= $t^{2} + 16t + \left(\frac{16}{2}\right)^{2}$
= $t^{2} + 16t + (8)^{2}$
= $t^{2} + 16t + 64$

So, this quadratic can be written as a square, $(t + 8)^2$, and therefore it is a perfect-square quadratic.

So, the number needed to complete the square was 64.

Explanation#2

Now we will add $\left(\frac{b}{2}\right)^2$ to complete the square.

$$t^{2} + 26t + \left(\frac{b}{2}\right)^{2}$$

= $t^{2} + 26t + \left(\frac{26}{2}\right)^{2}$
= $t^{2} + 26t + (13)^{2}$
= $t^{2} + 26t + 169$

So, this quadratic can be written as a square, $(t + 13)^2$, and therefore it is a perfect-square quadratic.

So, the number needed to complete the square was 169.

Name _____

Date _____

Explanation#3

Now we will add $\left(\frac{b}{2}\right)^2$ to complete the square.

$$t^{2} + 18t + \left(\frac{b}{2}\right)^{2}$$

= $t^{2} + 18t + \left(\frac{18}{2}\right)^{2}$
= $t^{2} + 18t + (9)^{2}$
= $t^{2} + 18t + 81$

So, this quadratic can be written as a square, $(t + 9)^2$, and therefore it is a perfect-square quadratic.

So, the number needed to complete the square was 81.

