Pythagorean Theorem in Action Guided Lesson Explanation

1. If this is a right triangle it will work out when the Pythagorean Theorem is applied to it. This means it will flow in the formula:

$$leg^2 + leg^2 = hypotenuse^2$$

$$16^2 + 14^2 = 22^2$$

Now we just need to see if the math works out.

$$16^2 + 14^2 = 22^2$$

$$256 + 196 = 484$$

$$452 = 484$$
 (This is not true.)

Since our values are not true, it is not a right triangle.

2. We are told it is a right triangle. This means that the Pythagorean Theorem can be used to find all the side.

 $leg^2 + leg^2 = hypotenuse^2$ We can use simple algebra to arrange this.

hypotenuse² - leg^2 = missing leg^2 We just drop our values in now.

$$27^2 - 17^2 = missing leg^2$$

$$729 - 289 = missing leg^2$$

 $440 = missing leg^2$ If we take the square root of both sides, we will solve it.

$$\sqrt{440} = \sqrt{\text{missing leg}^2}$$

$$20.98 = missing leg$$

3. We can see from the right triangle that we are provided that 75 is the measure of the hypotenuse and 42 is the measure of a leg. To find the missing leg, we can apply the same formula, we previously used, since it is a right triangle.

 $leg^2 + leg^2 = hypotenuse^2$ As we did previously, we can rearrange it for our needs.

 $hypotenuse^2 - leg^2 = missing leg^2$ We can now put our data into it.

 $75^2 - 42^2 = missing leg^2$

 $5,625 - 1,764 = missing leg^2$

 $3,861 = missing leg^2$

 $\sqrt{3,861} = \sqrt{\text{missing leg}^2}$

62.14 = missing leg