
Name \_\_\_\_\_

Date \_\_\_\_\_

## Law of Sines and the Ambiguous Case - Step-by-Step Lesson

In  $\triangle ABC$ , a = 20, c = 16, and  $m < A = 30^{\circ}$ .

How many distinct triangles can be drawn given these measurements?



## **Explanation:**

Use the Law of Sines:  $a/\sin A = c/\sin c$ 

 $20/30^{\circ} = 16/\sin c$ 

 $20(\sin C) = 16*\sin 30^{\circ}$ 

 $\sin C = 9*(0.5)/20 = 0.225$ 

Angles could be 30°, 13°, and 137°: sum 180°

with m<A =  $30^{\circ}$  and m<C =  $13^{\circ}$  the sum of the angles would exceed  $180^{\circ}$ .Not possible! Therefore, m<C =  $13^{\circ}$ , m<A =  $30^{\circ}$ , and m<B =  $137^{\circ}$  and only ONE triangle is possible.