Name _____ Date _____ ## Law of Sines and the Ambiguous Case - Step-by-Step Lesson In $\triangle ABC$, a = 20, c = 16, and $m < A = 30^{\circ}$. How many distinct triangles can be drawn given these measurements? ## **Explanation:** Use the Law of Sines: $a/\sin A = c/\sin c$ $20/30^{\circ} = 16/\sin c$ $20(\sin C) = 16*\sin 30^{\circ}$ $\sin C = 9*(0.5)/20 = 0.225$ Angles could be 30°, 13°, and 137°: sum 180° with m<A = 30° and m<C = 13° the sum of the angles would exceed 180° .Not possible! Therefore, m<C = 13° , m<A = 30° , and m<B = 137° and only ONE triangle is possible.