\qquad

Law of Sines and the Ambiguous Case - Independent Practice Worksheet

Complete all the problems.

1. From the Diagram solve the following:
$\mathrm{m}<\mathrm{A}=34^{\circ}$
$a=9$
$c=6$

How many distinct triangles can be drawn given these measurements?
2. In $\triangle A B C, a=19, b=15$, and $m<A=50^{\circ}$. How many distinct triangles can be drawn given these measurements?
3. In $\triangle A B C, a=35, c=25$, and $m \angle A=60^{\circ}$. How many distinct triangles can be drawn given these measurements?
4. From the Diagram solve the following:
$\mathrm{m}<\mathrm{A}=55^{\circ}$
$a=13$

$c=12$
How many distinct triangles can be drawn given these measurements?
5. In $\triangle A B C, a=8, b=16$, and $m<A=70^{\circ}$. How many distinct triangles can be drawn given these measurements?
\qquad
6. In $\triangle A B C, a=35, b=48$, and $m \angle A=80^{\circ}$. How many distinct triangles can be drawn given these measurements?
7. From the Diagram solve the following:
$m<A=44^{\circ}$
$\mathrm{a}=10$
$c=16$

How many distinct triangles can be drawn given these measurements?
8. From the Diagram solve the following:
$\mathrm{m}<\mathrm{A}=54^{\circ}$
$a=14$
$\mathrm{c}=7$

How many distinct triangles can be drawn given these measurements?
9. In $\triangle A B C, a=22, b=36$, and $m<A=56^{\circ}$. How many distinct triangles can be drawn given these measurements?
10. In $\triangle A B C, a=32, b=44$, and $m<A=68^{\circ}$. How many distinct triangles can be drawn given these measurements?

