\qquad

Express as a Single Logarithm - Guided Lesson Explanation

Explanation\#1

From the property of $\log a r i t h m s: \log a-\log b=\log a / b$
Hence, $\quad \log 3+\log 2=\log 3 / 2$

$$
=\log 1.5 \quad \text { is a single logarithm form. }
$$

The value of $\log \mathbf{3}$ in \log table $=\mathbf{0 . 4 7 1 1 2 1 3}$
The value of $\log \mathbf{2}$ in \log table $=\mathbf{0 . 3 0 1 0 3 0 0}$
Hence, $\log 3-\log 2=0.4771213-0.3010300$

$$
=0.18 \quad \text { which is same as } \log 1.5 .
$$

Explanation\#2

From the property of logarithms: $\log a-\log b=\log a / b$
Hence, $\log 4-\log 4=\log 4 / 4$
$=\log 1$ is a single logarithm form.
The value of $\log \mathbf{4}$ in \log table $=\mathbf{0 . 6 0 2 0 6 0}$
The value of $\log \mathbf{4}$ in \log table $\mathbf{=} \mathbf{0 . 6 0 2 0 6 0}$
Hence, $\log 4-\log 4 \quad=0.602060-0.602060$

$$
=0 \quad \text { which is same as } \log 1 .
$$

Explanation\#3

From the property of $\log a r i t h m s: \log a+\log b=\log a * b$
Hence, $\log 7+\log 3=\log 7 * 3$

$$
=\log 21 \quad \text { is a single logarithm form. }
$$

The value of $\log \mathbf{7}$ in \log table $=\mathbf{0 . 8 4 5 0 9 8 0}$
The value of $\log \mathbf{3}$ in \log table $=\mathbf{0 . 4 7 7 1 2 1 3}$

$$
\begin{aligned}
& \text { Hence, } \log 7+\log 3 \quad=0.8450980+0.4711213 \\
& =1.32 \quad \text { which is same as } \log 21 .
\end{aligned}
$$

