Name _____

Date _____

Conditionals [asks for Logic Table] - Guided Lesson Explanation

If the original is true, the ~ statement is false, and if the original is false, the ~ statement is true. The statements are conditional. This means the truth value is false only when the "if" statement is true and the "then" statement is false.

Explanation#1

In truth table original of ~M is true, than ~M is false.

The \rightarrow symbol is used to symbolize a relationship called material implication; a compound statement formed with this connective is true unless the component on the left (the antecedent) is true and the component on the right (the consequent) is false.

М	Ν	~M	~M → N
F	F	Т	F
Т	Т	F	Т

Explanation#2

In truth table original of G is true, than ~P is false.

The \rightarrow symbol is used to symbolize a relationship called material implication; a compound statement formed with this connective is true unless the component on the left (the antecedent) is true and the component on the right (the consequent) is false.

G	Н	~H	G→(~H)
F	F	Т	Т
Т	Т	F	F

Explanation#3

If the original is true, the \sim statement is false, and if the original is false, the \sim statement is true.

In truth table original of ~P is true, than ~P is false.

The → symbol is used to symbolize a relationship called material implication;

a compound statement formed with this connective is true unless the component on the left (the antecedent) is true and the component on the right (the consequent) is false.

D	E	~D	~E	~D→~E
F	F	Т	Т	Т
Т	Т	F	F	Т

