\qquad

Binary Operations - Guided Lesson Explanation

Explanation\# 1

Step la) We look for a symmetric value in the diagonal line of the table.
In this case we have the values: B-B-A-A. The table is symmetric with respect to the diagonal line. Yes, it is commutative.

C	A	B	C	D
A	B	A	D	C
B	A	B	C	D
C	D	C	A	B
D	C	D	B	A

Step 2b) The identity element is B because this is the element where all of the values in its row or column are the same as the row or column headings.

Step Sc) The inverse of A is A; the inverse of B is B; inverse of C is D and inverse of D is C.

Explanation\#2

Step 1) The diagonal line of the table shows no symmetry at all. No, it is commutative.

Step 2)
The identity element is \square An identity element is a single value that will always return the starting value.

Step 3) "For each element having an inverse, name the element and its inverse."

The inverse of
 ; the inverse of \qquad isinverse of is \qquad and inverse of is is
\qquad

Explanation\#3

Step 1a) The diagonal shows: s-e-s-e which is a nice symmetry.Yes, it is commutative.

Step 2b)"Name the identity element, or explain why none exists."
The identity element is e because this is the element where all of the values in its row or column are the same as the row or column headings.

Step 3c)
Inverse of: K is y ; e is e ; y is K and s is s .

