
Null, Identity and Inverse Matrices - Guided Lesson Explanation

Explanation#1

An identity matrix is a square matrix in which all entries are 0s, except for the top-left to bottom-right diagonal. The diagonal contains all 1s.

The order of 5 means that the matrix is a 5×5 matrix.

Explanation#2

If the determinant of a matrix is equal to 0, no inverse exists for the matrix. We can find the determinant of a 2×2 matrix by:

$$A = \begin{bmatrix} p & q \\ r & s \end{bmatrix}$$

= p x s - r x q

We have inserted the number from our matrix into this format:

8 (-4) - 3(7)

-32 - 21

 $\Delta = -53 \neq 0$

An inverse exits because the determinant is not equal to 0.

Tons of Free Math Worksheets at: © www.mathworksheetsland.com

Date _____

Explanation#3

Null matrices contain all 0s. The 3×5 order tells us that the matrix has 3 rows and 5 columns. You can see this below:

0	0	0	0	0	
0	0	0	0	0	
0	0	0	0	0	

Tons of Free Math Worksheets at: ©<u>www.mathworksheetsland.com</u>