\qquad

Using Density in Real-life Situations - Guided Lesson Explanation

Explanation\#1

Population Density $=$
number of people
Square feet

After input the numbers that we have
$0.003=\frac{X}{250,000 \text { square feet }}$
$(0.003)(250,000)=X$
$\mathrm{X}=750$ people
A total of 750 people attended the summer sale offer on that day.

Explanation\#2

Volume Requirement:

A volume less than or equal to $10,000 \mathrm{~cm}^{3}$.
Volume $=$ length x height x width
Volume $=20 \mathrm{~cm} \times 30 \mathrm{~cm} \times 10 \mathrm{~cm}$
Volume $=6000 \mathrm{~cm}^{3}$
Jenny's bag meets the requirement for volume.

Mass Requirement:

A mass is less than or equal to 7 kg .
Now that we have the volume, we can determine the mass by using the equation:

Mass $=$ Volume \times Density
Mass $=6000 \mathrm{~cm}^{3} \times 0.001 \mathrm{~kg} / \mathrm{cm}^{3}$
\qquad

Mass $=6 \mathrm{~kg}$
Jenny's bag meets the requirement for mass.
Jenny's bag meets both requirements.

Explanation\#3

Volume Requirement:

A volume is less than or equal to $17,000 \mathrm{~cm}^{3}$.
Volume $=$ length x height x width
Volume $=20 \mathrm{~cm} \times 25 \mathrm{~cm} \times 30 \mathrm{~cm}$
Volume $=15000 \mathrm{~cm}^{3}$
Jenny's luggage meets the requirement for volume.

Step 3) Mass Requirement:

A mass is less than or equal to 20 kg .
Now that we have the volume, we can determine the mass by using the equation:

Mass $=$ Volume \times Density
Mass $=15000 \mathrm{~cm}^{3} \times 0.0015 \mathrm{~kg} / \mathrm{cm}^{3}$
Mass $=22.5 \mathrm{~kg}$
Kitty's luggage bag not meets the requirement for mass.
Kitty's bag met only the first requirement. Therefore it does not fully qualify.

Tons of Free Math Worksheets at: © www.mathworksheetsland.com

