\qquad

Slopes of Parallel and Perpendicular Lines - Guided Lesson Explanation

Explanation\#1

Perpendicular lines have slopes that are opposite reciprocale, like $\frac{a}{b}$
And $\frac{-b}{a}$ opposite reciprocals have a product of -1 .
The slope-intercept form of a liner equation is
$Y=m x+b$
Where m is the slope and b is the y-intercept
A. find the slope of line j

First find the slope m of line j . this is the only time you will use the equation of line j
$Y=m x+b$
$Y=\frac{7}{6} x-12$
Line j has a slope m of $\frac{7}{6}$
B. find the slope of line k.

Line k is perpendicular to j, so its slope is the opposite reciprocal: $\frac{-6}{7}$
C. Use the slope of line k and a point on line k to find its y-intercept.

Plug the slope $m=\frac{-6}{7}$ and the point $(-4,3)$ into the slope-intersept formula. Then solve for the y-intercept b.
$Y=m x+b$
$3=\frac{-6}{7}(-4)+12$
$3=\frac{24}{7}+b$
$3-\frac{24}{7}=b$
$\frac{21}{7}-\frac{24}{7}=b$
\qquad
$-\frac{3}{7}=\mathrm{b}$
D. Use the slope of line k and the y-intercept of line k to find the equation of the line.

Plug the slope $m=\frac{-6}{7}$ and the y-intercept $b=-\frac{3}{7}$ into the slope-intercept formula.
$Y=m x+b$
$Y=\frac{-6}{7} x+-\frac{3}{7}$
The equation of line k in slope-intercept form is $y=\frac{-6}{7} x-\frac{3}{7}$

Explanation\#2

Parallel lines have the same slope.
Perpendicular lines have slope that are opposite reciprocals, like $\frac{a}{b}$ and $\frac{-b}{a}$ the slope also have a product of -1 .

The lines are parallel because Line C and line D has same slope which is $\frac{-6}{3}$

Explanation\#3

Perpendicular lines have slope that are opposite reciprocals, like $\frac{a}{b}$ and $\frac{-b}{a}$ opposite reciprocals have a product of -1

The slope-intercept form of a liner equation is
$Y=m x+b$
Where m is the slope and b is the y-intercept.
A. Find the slope of line j.
first find the slope of line j . this is the only time you will use the only time you will use the equation of line j.
$Y=m x+b$
$Y=\frac{3}{2} x-10$
\qquad

Line j has a slope m of $\frac{a}{b}$
B. find the slope of line k.

Line k is perpendicular to j, so its slope is the opposite reciprocal: $\frac{-2}{3}$
C. Use the slope of line k and a point on line k to find its y-intercept.

Plug the slope $m=\frac{-2}{3}$ and the point $(-2,7)$ into the slope-intersept formula. Then solve for the y-intercept b.
$Y=m x+b$
$7=\frac{-2}{3}(-2)+b$
$7=\frac{4}{3}+b$
$7-\frac{4}{3}=b$
$\frac{21}{3}-\frac{4}{3}=\mathrm{b}$
$\frac{17}{3}=b$
D. Use the slope of line k and the intercept of line k to find the equation of the line.

Plug the slope $m=\frac{-2}{3}$ and the y-intercept $b=\frac{18}{3}$ into the slpoe intercept formula.
$Y=m x+b$
$Y=\frac{-2}{3} x+\frac{17}{3}$

Tons of Free Math Worksheets at: © www.mathworksheetsland.com

