\qquad

Using Coordinates To Prove Theorems - Step-by-Step Lesson

Prove or disprove that the point $(3, \sqrt{ } 7)$ lies on the circle centered at the origin, and containing the point $(0,4)$.

Explanation:

We have start with the definition of a circle. A circle is the set of point equidistant from the center.

Therefore, if point $(3, \sqrt{ } 7)$ lies on this circle, it is the same distance from the center as point $(0,4)$.

If we prove the points are the same distance from the center, then they must lie on the same circle.

The center of this circle is the origin, or $(0,0)$. The distance from the origin to the point $(0,4)$.
$d_{1}=\sqrt{ }(0-0)^{2}+(4-0)^{2}$
$\mathrm{d}_{1}=\sqrt{ } 16$
$d_{1}=4$
We have to find the distance between the center and point $(3, \sqrt{ } 7)$
$d_{2}=\sqrt{ }(3-0)^{2}+(\sqrt{ } 7-0)^{2}$
$\mathrm{d}_{2}=\sqrt{ } 16$
$d_{2}=4$
So both the points lie on the circle.

