Equations of Ellipses - Matching Worksheet

Write the letter of the equation that matches the description of the ellipse.

1. This ellipse has vertices at (0-11) and $(0,11)$ and foci at($0,-9$) and $(0,9)$.
2. This ellipse has vertices at (0-12) and $(0,12)$ and foci at $(0,-8)$ and $(0,8)$.
b $\frac{x^{2}}{(\sqrt{320})^{2}}+\frac{y^{2}}{(18)^{2}}=1$
3. This ellipse has vertices at (0-13) and $(0,13)$ and foci at $(0,-7)$ and $(0,7)$.
c. $\frac{x^{2}}{(\sqrt{40})} 2+\frac{y^{2}}{(11)}=1$
4. Find the equations of an ellipse(in standard, form) that has vertices at (0-14) and $(0,14)$ and foci at $(0,-6)$ and $(0,6)$.
5. This ellipse has vertices at (0-15) and $(0,15)$ and foci at $(0,-5)$ and $(0,5)$.
e. $\frac{x^{2}}{(\sqrt{160})^{2}}+\frac{y^{2}}{(14)^{2}}=1$
6. This ellipse has vertices at (0-16) and $(0,16)$ and foci at $(0,-4)$ and $(0,4)$.
f. $\frac{x^{2}}{(\sqrt{280})^{2}}+\frac{y^{2}}{(17)^{2}}=1$
7. This ellipse has vertices at ($0-17$) and $(0,17)$ and foci at $(0,-3)$ and $(0,3)$.
$g \quad \frac{x^{2}}{(\sqrt{200})^{2}}+\frac{y^{2}}{(15)^{2}}=1$
8. This ellipse has vertices at ($0-18$) and $(0,18)$ and foci at $(0,-2)$ and $(0,2)$.

$$
\mathrm{h} \quad \frac{x^{2}}{(\sqrt{80})} 2+\frac{y^{2}}{(12)^{2}}=1
$$

