\qquad

Equations of Ellipses - Step-by-Step Lesson

Find the equations of an ellipse (in standard form) that has foci at ($0,-5$) and $(0,5)$ and vertices at($0,-11$) and $(0,11)$.

Explanation:

$\frac{(x-h)^{2}}{a}+\frac{(y-k)}{b^{2}}$
To write the equation in standard form, the center, a^{2} and b^{2} must be found. The x coordinate of the vertices and foci given are 0 , so the center of the ellipse has to be $(0,0)$.
|a| = horizontal distance
|b| = vertical distance
$(\mathrm{H}, \mathrm{k})=$ Center
$(0,0)=$ Center
Vertices: (0,-11), (0,11)
Vertices are 22 units apart.
Foci: $(0,5),(0,-5)$
Foci are 10 units apart.
Since the foci are 10 units apart, indicating that $|c|$ is 5 and c^{2}, then is 25 .
$|c|=5 \quad c^{2}=5^{2}$
To find b^{2}, use the foci equation. c is the distance from the center of the ellipse to the foci. Since the center is (0,0), and the vertices are ($0,-11$) and (0, 11), a equals 11 .
$c^{2}=|a-b|$
$|C|=$ distance from center to foci
\qquad
$(0,0)=$ Center
$(0,-11),(0,11)=$ vertices
$|a|=$ distance from center to vertex
$|a|=11$
Now that we have the values for a and c, we can substitute the values into the equation and simplify to find b.

$$
\begin{aligned}
& \mathrm{C}^{2}=\mid a^{2}-b^{2} \\
& (5)^{2}=\left|11^{2}-(b)^{2}\right| \\
& 25=\left|121-b^{2}\right| \\
& \mathrm{b}^{2}=121-25 \\
& \mathrm{~b}^{2}=96
\end{aligned}
$$

Substitute 0 for h and k, the square root of 96 for b and 11 for a into the standard form equation of an ellipse. The equation is y squared over the square of 11 plus x squared over the square of the square root of 96 equals tol.

$$
\begin{aligned}
& \frac{(y-h)^{2}}{a^{2}}+\frac{(x-k)^{2}}{b^{2}}=1 \\
& \frac{(y-0)^{2}}{(11)^{2}}+\frac{(x-0)^{2}}{(\sqrt{96})} 2=1 \\
& \frac{y^{2}}{(11)^{2}}+\frac{x^{2}}{(\sqrt{96})^{2}}=1
\end{aligned}
$$

