\qquad

Topic: Equidistant from Two Intersecting Lines - Worksheet 1

1. What is the equation of the locus of points equidistant from the x-axis and the y axis in the second quadrant?
2. Describe the locus of a third row of Table so that it is always the same distance from each intersecting row of table making an angle of 60°.
3. Describe the locus of a third row of Dice so that it is always the same distance from each intersecting Dice making an angle of 30°.
4. A Rod has to be fit so that it is always the same distance from each intersecting rod forming an angle of 60°. The path of third rod is 12° from each intersecting Rod. True or False?
5. Describe the locus of a third row of pins so that it is always the same distance from each intersecting row of pins making an angle of 46°.
6. Martin walks so that he is always the same distance from each intersecting Mountain range forming an angle of 108°. Describe Martin's path.
7. Mark drives so that he is always the same distance from each intersecting field forming an angle of 56°. Mark's path is at 28° from each intersecting field. True or False?
8. A Ruler has to be fit so that it is always the same distance from each intersecting Ruler forming an angle of 96°. Describe path of the third ruler.
9. A Needle has to be fit so that it is always the same distance from each intersecting needle forming an angle of 72°. Describe path of third needle.
10. The locus of a third path so that it is always the same distance from each intersecting path making an angle of 12° is 24° from each intersecting path. True or False?
\qquad

Topic: Equidistant from Two Intersecting Lines - Worksheet 2

1. What is the equation of the locus of points equidistant from the x-axis and the y axis in the second quadrant?
2. Describe the locus of third row of line so that it is always the same distance from each intersecting row of line making an angle of 86°.
3. Describe the locus of a third row of cars so that it is always the same distance from each intersecting car making an angle of 90°.
4. A rope has to be fit so that it is always the same distance from each intersecting rope forming an angle of 46°. The path of first hall is 25° from each intersecting stick. True or False?
5. Describe the locus of a third row of pencils so that it is always the same distance from each intersecting row of pencils making an angle of 58°.
6. Bob walks so that he is always the same distance from each intersecting field forming an angle of 74°. Describe Bob's path.
7. Ricky drives so that he is always the same distance from each intersecting road forming an angle of 24°. Ricky's path is at 12° from each intersecting road. True or False?
8. A circle has to be fit so that it is always the same distance from each intersecting circle forming an angle of 68°. Describe path of the third circle.
9. A stripe has to be fit so that it is always the same distance from each intersecting stripe forming an angle of 36°. Describe path of third stripe.
10. The locus of a third path so that it is always the same distance from each intersecting path making an angle of 66° is 33° from each intersecting path. True or False?
\qquad

Topic: Equidistant from Two Intersecting Lines - Worksheet 3

1. What is the equation of the locus of points equidistant from the x-axis and the y axis in the third quadrant?
2. Describe the locus of a third row of spoons so that it is always the same distance from each intersecting row of spoons making an angle of 94°.
3. Describe the locus of a third row of bike so that it is always the same distance from each intersecting bike making an angle of 26°.
4. A triangle has to be fit so that it is always the same distance from each intersecting triangle forming an angle of 44°. The path of third rod is 22° from each intersecting triangle. True or False?
5. Describe the locus of a third row of balloons so that it is always the same distance from each intersecting row of balloons making an angle of 78°.
6. Mary walks so that she is always the same distance from each intersecting hill range forming an angle of 84°. Describe Mary's path.
7. Andrew drives so that he is always the same distance from each intersecting field forming an angle of 52°. Andrew's path is at 26° from each intersecting field. True or False?
8. A design has to be fit so that it is always the same distance from each intersecting designs forming an angle of 74°. Describe path of the third design.
9. A box has to be fit so that it is always the same distance from each intersecting box forming an angle of 84°. Describe path of third box.
10. The locus of a third road so that it is always the same distance from each intersecting road making an angle of 88° is 44° from each intersecting road. True or False?
\qquad

Topic: Equidistant from Two Intersecting Lines - Worksheet 4

1. What is the equation of the locus of points equidistant from the x-axis and the y axis in the fourth quadrant?
2. Describe the locus of a third row of glasses so that it is always the same distance from each intersecting row of glasses making an angle of 84°.
3. Describe the locus of a third row of matchsticks so that it is always the same distance from each intersecting matchsticks making an angle of 62°.
4. A bamboo has to be fit so that it is always the same distance from each intersecting bamboo forming an angle of 94°. The path of third bamboo is 36° from each intersecting bamboo. True or False?
5. Describe the locus of a third row of pencils so that it is always the same distance from each intersecting row of pencils making an angle of 48°.
6. Anish walks so that he is always the same distance from each intersecting hill range forming an angle of 58°. Describe Anish's path.
7. Kim drives so that she is always the same distance from each intersecting field forming an angle of 98°. Kim's path is at 49° from each intersecting field. True or False?
8. A cylinder has to be fit so that it is always the same distance from each intersecting cylinder forming an angle of 74°. Describe path of the third cylinder.
9. A bolt has to be fit so that it is always the same distance from each intersecting bolts forming an angle of 84°. Describe path of third bolt.
10. The locus of a third line so that it is always the same distance from each intersecting line making an angle of 20° is 10° from each intersecting line. True or False?

Tons of Free Math Worksheets at: © www.mathworksheetsland.com
\qquad

Topic: Equidistant from Two Intersecting Lines - Worksheet 5

1. What is the equation of the locus of points equidistant from the x-axis and the y axis in the first quadrant?
2. Describe the locus of a third row of chairs so that it is always the same distance from each intersecting row of chairs making an angle of 42°.
3. Describe the locus of a third row of cards so that it is always the same distance from each intersecting card making an angle of 36°.
4. A stick has to be fit so that it is always the same distance from each intersecting stick forming an angle of 72°. The path of third rod is 36° from each intersecting stick. True or False?
5. Describe the locus of a third row of pens so that it is always the same distance from each intersecting row of pens making an angle of 24°.
6. John walks so that he is always the same distance from each intersecting hill range forming an angle of 56°. Describe John's path.
7. Brad drives so that he is always the same distance from each intersecting field forming an angle of 72°. Brad's path is at 45° from each intersecting field. True or False?
8. A pattern has to be fit so that it is always the same distance from each intersecting pattern forming an angle of 86°. Describe path of the third pattern.
9. A spike has to be fit so that it is always the same distance from each intersecting spike forming an angle of 62°. Describe path of third spike.
10. The locus of a third road so that it is always the same distance from each intersecting road making an angle of 24° is 35° from each intersecting road. True or False?
