Graphing Exponential and Logarithmic Functions - Independent Practice Worksheet

Complete all the problems.

1. Graph $f(x) = 5^{3-x}$

Since 3-x is zero when x=3, we will choose x values around 3 in our table of values. Also, let's graph 5^{x} on the same axes for comparison.

2. Graph $f(x) = 7^{5-x}$

Since 5-x is zero when x=5, we will choose x values around 5 in our table of values. Also, let's graph 7^x on the same axes for comparison.

3. Graph $f(x) = 6^{4-x}$

Since 4-x is zero when x=4, we will choose x values around 4 in our table of values. Also, let's graph 6^{x} on the same axes for comparison.

4. Graph $f(x) = 8^{4-x}$

Since 4-x is zero when x=4, we will choose x values around 4 in our table of values. Also, let's graph 8^{x} on the same axes for comparison.

5. Graph $f(x) = 9^{7-x}$

Since 7-x is zero when x=7, we will choose x values around 7 in our table of values. Also, let's graph 9^{x} on the same axes for comparison.

6. Graph $f(x) = \log_9 x$.

Rewriting $f(x) = y = \log_9 x$. in exponential form we get $x = 9^y$. We can graph $x=9^y$ by using the same method for exponential function, except this time we will choose values for y and then compute the corresponding values for x.

7. Graph $f(x) = \log_6 x$.

Rewriting $f(x) = y = \log_6 x$. in exponential form we get $x = 6^y$. We can graph $x=6^y$ by using the same method for exponential function, except this time we will choose values for y and then compute the corresponding values for x.

8. Graph $f(x) = \log_2 x$.

Rewriting $f(x) = y = \log_2 x$. in exponential form we get $x = 2^y$. We can graph $x=2^y$ by using the same method for exponential function, except this time we will choose values for y and then compute the corresponding values for x.

9. Graph $f(x) = \log_{10}x$.

Rewriting $f(x) = y = \log_{10}x$. in exponential form we get $x = 10^{y}$. We can graph $x=10^{y}$ by using the same method for exponential function, except this time we will choose values for y and then compute the corresponding values for x.

10. Graph $f(x) = \log_8 x$.

Rewriting $f(x) = y = \log_8 x$. in exponential form we get $x = 8^y$. We can graph $x=8^y$ by using the same method for exponential function, except this time we will choose values for y and then compute the corresponding values for x.

