\qquad

Graphing Exponential and Logarithmic Functions - Independent Practice Worksheef

Complete all the problems.

1. Graph $f(x)=5^{3-x}$

Since 3 - x is zero when $\mathrm{x}=3$, we will choose x values around 3 in our table of values. Also, let's graph 5^{x} on the same axes for comparison.
2. $\operatorname{Graph} \mathrm{f}(\mathrm{x})=\mathbf{7}^{5-\mathrm{x}}$

Since $5-\mathrm{x}$ is zero when $\mathrm{x}=5$, we will choose x values around 5 in our table of values. Also, let's graph 7^{x} on the same axes for comparison.
3. $\operatorname{Graph} f(x)=6^{4-x}$

Since 4 - x is zero when $\mathrm{x}=4$, we will choose x values around 4 in our table of values. Also, let's graph $\mathbf{6}^{\mathrm{x}}$ on the same axes for comparison.
4. $\operatorname{Graph} f(x)=8^{4-x}$

Since 4 - x is zero when $x=4$, we will choose x values around 4 in our table of values. Also, let's graph 8^{x} on the same axes for comparison.
5. $\operatorname{Graph} \mathrm{f}(\mathrm{x})=\mathbf{9}^{7-\mathrm{x}}$

Since 7 - x is zero when $\mathrm{x}=7$, we will choose x values around 7 in our table of values. Also, let's graph 9^{x} on the same axes for comparison.
\qquad
6. $\operatorname{Graph} f(x)=\log 9 x$.

Rewriting $f(x)=y=\log _{9} x$. in exponential form we get $x=9 y$. We can graph $x=9 y$ by using the same method for exponential function, except this time we will choose values for y and then compute the corresponding values for \mathbf{x}.
7. $\operatorname{Graph} f(x)=\log _{6} x$.

Rewriting $f(x)=y=\log _{6} x$. in exponential form we get $x=6^{y}$. We can graph $x=6^{y}$ by using the same method for exponential function, except this time we will choose values for y and then compute the corresponding values for \mathbf{x}.
8. $\operatorname{Graph} f(x)=\log _{2} x$.

Rewriting $f(x)=y=\log _{2} x$. in exponential form we get $x=2 y$. We can graph $x=2 y$ by using the same method for exponential function, except this time we will choose values for y and then compute the corresponding values for \mathbf{x}.
9. $\operatorname{Graph} f(x)=\log _{10 x}$.

Rewriting $f(x)=y=\log _{10 x} x$ in exponential form we get $x=10^{y}$. We can graph $x=10^{y}$ by using the same method for exponential function, except this time we will choose values for y and then compute the corresponding values for \mathbf{x}.
10. $\operatorname{Graph} f(x)=\log _{8} x$.

Rewriting $f(x)=y=\log 8 x$. in exponential form we get $x=8^{y}$. We can graph $x=8 y$ by using the same method for exponential function, except this time we will choose values for y and then compute the corresponding values for \mathbf{x}.

