Properties of Exponents

Exponents

EXPONENT IS USED TO DESCRIBE THE POWER OF A NUMBER OR AN EXPRESSION I.E. FOR HOW MANY TIMES THE NUMBER OR EXPRESSION HAS BEEN MULTIPLIED.

EXAMPLES: 5^4 $3X^2$ $(Y-3)^3$

Properties of		
Zero Exponent Property	Exponents If a non-zero number or an expression is raised to a power "0" then the number or expression equals 1.	Examples: $4^0 = 1$ where $4 \neq 0$ $x^0 = 1$ where $x \neq 0$
Negative Exponent Property	If the power of a number or expression is negative in the numerator then the power becomes positive in denominator.	Examples: $6^{-2} = \frac{1}{6^2}$ $y^{-4} = \frac{1}{y^4}$
Product of Powers Property	If two expressions are being multiplied with same bases then the powers/exponents are added.	Example $6^2 \times 6^3 = 6^{2+3} = 6^5$
Quotient of Powers Property	If two expressions are being divided with same bases then the powers/exponents are subtracted.	Example $\frac{a^4}{a^{-2}} = a^{4-(-2)} = a^{4+2} = a^6$
Power of a Product Property	If two different expressions are being multiplied with same exponents then they can be written as one expression.	Examples $x^2 \times y^2 = (xy)^2$ $3^2 \times 2^2 = (3 \times 2)^2 = 6^2$
Power of a Quotient Property	If two different expressions are being divided with same exponents then they can be written as one expression.	Examples: $\frac{x^a}{y^a} = \left(\frac{x}{y}\right)^a$ and $\frac{6^3}{4^3} = \left(\frac{6}{4}\right)^3$
Power of a Power Property	The exponents will be multiplied if a power of a power is raised to an expression.	Examples: $(x^{a})^{b} = x^{ab}$ $(5^{3})^{2} = 5^{3 \times 2} = 5^{6}$
Rational Exponent Property	If a rational exponent is raised to an expression then it can be written as a radical expression.	Examples: $x^{1/a} = \sqrt[a]{x}$ $x^{\frac{b}{a}} = \sqrt[a]{x^{b}} = (\sqrt[a]{x})^{b}$

Meets: Common Core Standard High School – HSA-SSE.A.3c