\qquad

Two Linear Equations in Two Variables - Step-by-Step Lesson

Line A and B has the following points:
Line A: $(4,5)$ and $(-4,2)$
Line B: $(5,8)$ and $(-5,-5)$
Find the point where the two lines intersect.

Explanation:

What we can do is find the equation of both lines. If we then set them equal to each other, we can find the x value of where they both meet. We can then plug that x value into either equation to find the y value of where they meet.

Step 1: Find the equation of each line.

Line A: $(4,5)(-4,2) \quad Y=m x+b$
Where $\mathrm{m}=$ slope Solving for m :
$\mathrm{m}=\frac{y 2-y 1}{x 2-x_{1}}=\frac{(2-5)}{(-4-4)}=\frac{-3}{-8}=\frac{3}{8}$
Solve for b :
$\mathrm{Y}=\frac{3}{8} \mathrm{x}+\mathrm{b}=5=\frac{3}{8} \times 4+\mathrm{b}=5=\frac{12}{8}+\mathrm{b}=\mathrm{b}=\frac{7}{2}$
The equation for line A is: $y=\frac{3}{8} x+\frac{7}{2}$
Line B: $(5,8)(-5,-5) \quad y=m x+b$
$\mathrm{M}=\frac{y 2-y 1}{x 2-x 1}=\frac{(-5-8)}{(-5-5)}=\frac{-13}{-10}=\frac{13}{10}$
Solve for b :
\qquad
$y=\frac{13}{10} x+b=8=\frac{13}{10} \times 5+b=8=\frac{65}{10}+b=b=\frac{3}{2}$

The equation for line b is : $y=\frac{13}{10} x+\frac{3}{2}$
(A) : $y=\frac{3}{8} x+\frac{7}{2}$
(B) $y=\frac{13}{10} x+\frac{3}{2}$

Step 2) Set them equal to one another and solve for \mathbf{x}.
$\frac{3}{8} x+\frac{7}{2}=\frac{13}{10} x+\frac{3}{2}$
$2=\frac{37}{40} \mathrm{x}$
$=\frac{15 x+140=52 x+60}{40}=\frac{80}{37}=2.16$ (This is the x value.)
Step 3) Plug the x value into either of the equations to determine the y value of the intersection.
$y=\frac{3}{8} \times 2.16+\frac{7}{2}=.81+3.5=4.31 \quad$ (The y value)

The point where both lines intersect would be (2.16, 4.31).

